ACT Test Breakdown - Math

60 math questions in 60 minutes

Pre-Algebra	23%
Elementary Algebra	13%
Intermediate Algebra	15%
Coordinate Geometry	15%
Plane Geometry	23%
Trigonometry	7%

Tips/Strategies for Math

- Try to do the easy questions in 5-10 seconds; that will free up some time for the harder problems.
- Circle important numbers and information as you are reading; draw and mark diagrams whenever possible.
- Don't be afraid to show work. It will help you focus on the task.
 - o Solving algebraically is more efficient (time saving) than trying to guess.
- The questions start easier and get progressively more difficult.
- Do the ones that you know how to do first and focus on getting those correct. Go back and do the other ones at the end and if you can't figure it out give your best guess.
- Even though the diagrams say they are not to scale, they are. Estimate!
- Try to do the problems without looking at the answers first. Working backwards from the answers should be a last result.
- One strategy is to pick specific values for the variables to make the questions more concrete and less abstract.
- Always go back and answer the question. Many of the wrong answers are there because they represent a number in a calculation that wasn't carried out until the end.
- Use your graphing calculator to help you. It is helpful for: working with fractions and decimals, determining square root expressions are equivalent, graphing, solving with graphs or tables, putting two expressions in Y= to determine equivalence, etc.
- If you don't know how to solve an equation algebraically, solve with a table or graph.
- Memorize formulas and know basic concepts (distance formula, midpoint formula, Quadratic Formula, Pythagorean Theorem, Pythagorean Triples, area formulas, volume formulas, special right triangles, right triangle trigonometry)
- If you have time, go back and check your work.
- Do the practice test at home timing yourself.

Prealgebra Reminders for the ACT

Mean (aka "average"), Median, and Mode

Average = $\frac{sum \ of \ values}{number \ of \ values}$ Sometimes you are given the average and need to find one of the values. Write an equation and use algebra!	Median – the middle value (after you put the numbers in order!)	Mode – the most common value
--	---	---------------------------------

Probability and Counting

If one operation can be done in \boldsymbol{a} ways and a second can be done in \boldsymbol{b} ways, then the number of ways to do the first operation followed by the second is the product \boldsymbol{ab} .

Percents

Remember to change percents to their decimal equivalents when computing (ex: 8.25% = .0825) Translate the question to an equation and solve. *a number* = *percent* * *whole* If you are adding a percent to the whole then multiply by (1 + percent). If you are subtracting a percent from the whole then multiply by (1 – percent).

Finding the number An item is \$3 now. If it goes on sale for 20% off, what is the sale price?	Finding the whole An item has a tax of 8% off and the total price is \$6.48. What is the regular price?	Finding the percent A sales rep has a sales goal of 40 items. He sells 52 instead. The actual sales represent what percent of the goal?
number = (1 – 0.20)*3	6.48 = (1 + 0.08)*whole	52 = percent * 40

Factors, GCFs, LCMs, LCDs, and Primes

	Factors of 8: 1, 2, 4, 8 Factors of 12: 1, 2, 3, 4, 6, 12	Common factors are 1, 2, 4 The greatest common factor is 4.	A number that has only factors of 1 and
- 1	Multiples of 8: 8, 16, 24, 32, 48 Multiples of 12: 12, 24, 36, 48	The least common multiple is 24.	itself is prime. 0 and 1 are not considered prime. All other numbers that are not prime are composite.
- {	Ma use the least senses as welltings	to the same allowed allowed to the same and the same at the same a	

We use the least common multiple when deciding what common denominator to use in order to add or subtract fractions. Thus, the least common denominator is the least common multiple of the denominators.

Miscellaneous

- Distance = rate* time
- Recognize proportional situations and set up proportions to find the missing value. An example is a
 question about how many degrees to use for a particular category when creating a circle graph. Remember
 that there are 360° in a circle.
- You may see things that you have never seen before—sometimes that is the idea!

 An example would be a question that begins "a □ b = 2 + a + b − ab". You will need to either substitute values using the rule given or generalize about the results of the rule.

Calculator Tips

Use parentheses around negative numbers and numerators and denominators.

When you are using your calculator with a mixed number such as $2\frac{5}{8}$, enter as (2 + 5/8).

You can enter numbers in scientific notation as you see them as long as you put them in parentheses prior to calculating.

Prealgebra Practice for the ACT

1. What is the least common denominator when adding the fractions $\frac{f}{3}$, $\frac{g}{4}$, $\frac{h}{8}$, and $\frac{j}{12}$? A. 24 B. 48 C. 64 D. 96 E. 288	2. Kareem has 4 sweaters, 6 shirts, and 3 pairs of slacks. How many distinct outfits, each consisting of a sweater, shirt, and a pair of slacks, can Kareem select. A. 13 B. 36 C. 42 D. 72 E. 216
3. If p is a factor of both 45 and 60, but not a factor of 9 nor 10, what should you get when you add the digits in p? A. 3 B. 2 C. 5 D. 6 E. 9	4. An oil tank contains 4,800 gallons of oil. Each gallon of oil weighs approximately 6 pounds. About how many pounds does the oil in the tank weigh? A. 800 B. 4,806 C. 6,000 D. 28,800 E. 46,800
5. John has taken 5 of the 6 equally weighted tests in his U. S. History class this semester and has earned the following scores: 90, 82, 60, 75, 83. How many points does he need to earn on the 6 th test to bring his average score up to exactly 80.0 points? A. 90 B. 88 C. 82 D. 80 E. 78	6. A carton of 12 cans of soda is priced at \$6.60 now. If the soda goes on sale for 20% off the current price, what will be the price of the carton? A. \$0.55 B. \$1.32 C. \$5.28 D. \$6.36 E. \$6.40
7. If 75% of a number is 180, then what is 10% of the number? A. 2.4 B. 13.5 C. 24 D. 45 E. 240	8. On Monday a skirt was priced at \$60.00. On Wednesday, the price was reduced by 15%. Two weeks later, the price was further reduced by 20%. What percent of the original price is this last price? A. 35% B. 40% C. 51% D. 65% E. 68%

Algebra Practice for the ACT

	1. Which of the following is (are) equivalent to the	2. Carrie has \$7 less than does her brother, Steve, who has
1	mathematical operation $a(b + c)$ for all real numbers a , b ,	d dollars. Carrie does not spend any money and earns \$3.
	and <i>c</i> ?	Which of the following is an expression for the amount of
	I. $ca + ba$	money, in dollars, that Carrie has?
	II. $ab + ac$	
	III. $(b+c)a$	A. $(d-7)+2$
		B. <i>d</i> + 4
	A. I only	WWW. 1000 100 100 100 100 100 100 100 100 1
	B. II only	C. $d - (7 + 3)$
	C. III only	D. <i>d</i> – 4
		E. <i>d</i> – 7
	D. I and II only	·
	E. I, II and III	
	3. In the standard (x,y) coordinate plane, what is the slope	4. If $q = 1$ and $s = 3$, what is the value of the expression
١	of a line containing the points (3, -8) and (4, 7)?	$\left \frac{(q-s)}{3q}\right $?
		3q
ĺ	A. $-\frac{1}{15}$	F1
l	2.000	G. $-\frac{2}{3}$
	B1	3
	C. $\frac{3}{7}$	H. $\frac{2}{3}$
	D. 7	3
	E. 15	$l_{1} = \frac{4}{2}$
	E. 13	3
		J. 4
ŀ	[M/hat is the value of the average of $(v, v)^2$ where [C 15 0 4
	5. What is the value of the expression $(x - y)^2$ when $x = 5$	6. If $0.4x + 2.2 = x - 2$, then $x = ?$
	and y = -1?	A 2
	A 4	A. 3
	A. 4	B. 6
	B. 6 C. 16	C. 7
		D. 10
	D. 24	E. 14
	E. 36	
	7 If 12 0/10\ there 2	, , , , , , , , , , , , , , , , , , ,
	7. If $12x = -8(10 - x)$, then $x = ?$	8. The value of x that will make $\frac{x}{2} + 1 = \frac{3}{4}$ a true statement
	F 20	lies between which of the following numbers?
	F. 20	
	G. 8	A3 and -1
	3	B1 and 0
	H. $7\frac{3}{11}$	C. 0 and 1
		D. 1 and 3
	J. $6\frac{2}{13}$	E. 3 and 5
	K20	
	N20	
	0. What is the viintercent of the line in the standard (v. A.	Λ 0
	9. What is the y-intercept of the line in the standard (x, y)	A. 0
	coordinate plane that goes through the points (-3, 6) and	B. 2
	(3, 2)?	C. 4
		D. 6

10. The point (2, 5) is shown in the standard (x, y) coordinate plane. Which of the following is another point on the line through the point (2, 5) with a slope of $-\frac{2}{3}$?

11. If a system of 2 linear equations in 2 variables has NO solution, and 1 of the equations is graphed in the (x,y) coordinate plane below, which of the following could be the equation of the other line?

A.
$$y = -2$$

B. $y = -4x + 2$
C. $y = -2x - 3$
D. $y = 4x + 2$
E. $y = 4x - 3$

12. The figure most closely resembles the graph of which of the following functions?

A.
$$-x^2 + 1$$

B.
$$x^2 + 1$$

C.
$$x^2 - 1$$

E.
$$x^2 - 1$$

13. What is the distance, in coordinate units, between the points (-3, 5) and (4, -1) in the standard (x, y) coordinate plane?

A.
$$\sqrt{13}$$

B.
$$\sqrt{17}$$

Try this matrix problem...

14. The number of students participating in fall sports at a certain high school can be shown by the following matrix.

The athletic director estimates the ratio of the number of

sports awards that will be earned to the number of

_
Tennis
40

Given these matrices, what is the athletic director's estimate for the number of sports awards that will be earned for these fall sports?

- A. 80
- B. 88
- C. 91
- D. 92
- E. 99

students participating with the following matrix. Tennis 0.3_{1} Soccer 0.4 Cross Country 0.2 Football

Geometry Reminders for the ACT

Angle Measures

Angles Formed by Parallel Lines and a Transversal

Side Measures of Triangles

On the Coordinate Plane

If you forget the distance or midpoint formula, start by plotting the two points you are given (a quick sketch!). For midpoint.

For distance, use the Pythagorean Theorem: A A (x1, y1) remember that the x-coordinate A (x1, y1) of the midpoint is exactly in the $AB^2 = (x2 - x1)^2 + (y2 - y1)^2$ middle of the x-coordinates of the endpoints(and the same for y). B (x2, y2) B (x2, y2) The equation of a circle with center (h, k) and radius r is $(x - h)^2 + (y - k)^2 = r^2$.

Similar Triangles and Polygons

If two polygons are similar then all corresponding angles are congruent and all corresponding sides are proportional.

Common and Important Formulas

Circumference of circle = πd Area of circle = πr^2

Area of a parallelogram = bh Area of a triangle = $\frac{1}{2}bh$

The height must be perpendicular to the base! If the height is not given, look for a right triangle and use the Pythagorean Theorem.

Surface area of a 3D figure: find the area of each side and add.

Geometry Practice

1. The parallel sides of the isosceles trapezoid shown below are 10 feet long and 16 feet long, respectively. What is the distance, in feet, between these 2 sides?

- B. 4
- C. 5
- D. 10
- E. 16

- 2. A moving company uses a plank on a staircase from the top of a staircase to the floor to allow them to move a heavy desk. As shown in the figure below, each stair is 7 inches high and 10 inches deep. Which of the following is closest to the length, in inches, of the plank?
 - A. 42
 - B. 48
 - C. 73
 - D. 102
 - E. 252

- 3. In the figure, all of the line segments are either horizontal or vertical, as shown, and the dimensions are given in centimeters. What is the perimeter, in centimeters of the figure?
 - A. 26
 - B. 29
 - C. 31
 - D. 32

 - E. 81

3

- pairs of the 5 statements A, B, C, D, and E. If A is true, then C is true.
 - If *D* is true, then *E* is true.
 - If A is true, then D is true.
 - If *E* is true, then *B* is true.
 - If A is true, then which of the following lists gives all the other statements that are necessarily true?

4. Given below are 4 true if-then statements involving

- A. B, C, D, and E
- B. *B*, *D*, and *E*
- C. B and E

5

- D. C and D
- E. C, D, and E
- 5. In the figure below, the vertices of $\triangle ABC$ have (x, y)coordinates (4, 5), (5, 3), and (1, 3), respectively. What is the area of $\triangle ABC$?
 - A. 4
 - B. $4\sqrt{2}$
 - C. $4\sqrt{3}$
 - D. 8
 - E. $8\sqrt{2}$

- 6. In the figure below, ABCD is a square and E, F, G, and H are the midpoints of its sides. If AB = 12 inches, what is the perimeter of EFGH, in inches?
 - A. 24
 - B. $24\sqrt{2}$
 - C. $36\sqrt{2}$
 - D. $48\sqrt{2}$
 - E. 72

- 7. In the standard (x, y) coordinate plane, point A has coordinates of (1, 7) and point B has coordinates of (8, 20). What are the coordinates of the midpoint of \overline{AB} ?
 - A. (8, 27)
 - B. (3.5, 6.5)
 - C. (4, 14)
 - D. (-6, -6)
 - E. (4.5, 13.5)

- 8. In the standard (x, y) coordinate plane, point M with coordinates (5, 4) is the midpoint of \overline{AB} , and B has coordinates (7, 3). What are the coordinates of A?
 - F. (17, 11)
 - G. (9, 2)
 - H. (6, 3.5)
 - J. (3, 5)
 - K. (-3, -5)

Advanced Algebra Trig Reminders for the ACT

Right triangle trig:

$$Sine = \frac{opposite}{hypotenuse} \qquad Cosine = \frac{adjacent}{hypotenuse} \qquad Tangent = \frac{opposite}{adjacent}$$

For example:

$$sinA = \frac{4}{5} \quad cosA = \frac{3}{5} \quad tanA =$$

On the coordinate plane:

Sine =
$$\frac{y}{r}$$
 Cosine = $\frac{x}{r}$ Tangent = $\frac{y}{r}$

Solving formulas in terms of another variable.

For example: Solve a(b + c) = d for b.

Distribute: ab + ac = d

Subtract ac from both sides of the equation: ab = d - ac

Divide by a: $b = \frac{d-ac}{a}$ which can also be written as $b = \frac{d}{a} - c$

A **sinusoid** is a cyclic graph, where the input is the angle measure and the output is the trig ratio (for either sine or cosine).

Amplitude: The distance from the maximum to midline (or the distance from the minimum to midline)

Period: How long it takes to get through one cycle.

**Note: 360 degrees is equal to 2π radians

A matrix (plural matrices) is a rectangular array of numbers displayed in rows and columns.

For example:

 $\begin{bmatrix} 2 & 7 \\ 0 & 3 \\ 4 & 1 \end{bmatrix}$ is a matrix with dimensions 3×2, because there are

three rows and 2 columns.

Function notation

For example: Given f(x) = 2x + 1, find f(3).

Then 2(3) + 1, so it equals 7.

Know how to evaluate expressions involving exponents, roots, absolute value

Solve and graph linear equations, linear inequalities, and systems of linear equations.

Solve quadratic equations using the quadratic formula or factoring

Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

A logarithm is an exponent.

For example: $log_2 8$ is equal to 3, because $2^3 = 8$.

Sets of numbers: complex/imaginary, real, irrational, rational, integers, whole

8

Extended Distributive property/Factoring

Multiply a binomial times a binomial. For example: Multiply (x + 3)(x + 5). Answer: $x^2 + 8x + 15$

Square a binomial. For example: Multiply $(x + y)^2$. Answer: $x^2 + 2xy + y^2$

Factoring is the inverse of the distributive property. For example: Factor $x^2 + 8x + 15$. Answer: (x + 3)(x + 5).

B15 be factors of $ax^2 + bx + c^2$ be factors of $ax^2 + bx + c^2$ A. $(5x - 3)$ and $(2x + 1)$ B. $(5x - 1)$ and $(2x - 3)$ D. $(5x + 3)$ and $(2x - 3)$ D. $(5x + 3)$ and $(2x - 1)$ E. $(5x + 3)$ and $(2x + 1)$ 17. Given $f(x) = 4x + 1$ and $g(x) = x^2 - 2$, which of the following is an expression for $f(g(x))$? A. $-x^2 + 4x + 1$ B. $x^2 + 4x - 1$ C. $4x^2 - 7$ D. $4x^2 + h^2$ E. $4x^2 + h^2$ D. $4x^2 + h^2$ E. $4x^2 + h^2 - 2$ D. $4x^2 + h^2$ E. $4x^2 + h^2 - 2$ D. $4x^2 + h^2$ E. $4x^2 + h^2 - 2$ D. $4x^2 + h^2$ E. $4x^2 + h^2 - 2$ D. $4x^2 + h^2$ E. $4x^2 + h^2 - 2$ D. $4x^2 + h^2$ E. $4x^2 + h^2 - 2$ D. $4x^2 + h^2$ A. $4x^2 + h^2$ A. $4x^2 + h^2$ A. $4x^2 + h^2$ B. $4x^2 + h^2$ C. $4x^2 + h^2$ A. $4x^2 + h^2$ B. $4x^2 + h^2$ A. $4x^2 + h^2$ B. $4x^2 + h^2$ C. $4x^2 + h^2$ D. 4	15. What is the sum of the 2 solutions of the equation: $x^2 + 2x - 15 = 0$?	16. For a certain quadratic equation, $ax^2 + bx + c = 0$, the 2 solutions are $x = \frac{3}{5}$ and $x = -\frac{1}{2}$. Which of the following could
B. $\frac{5}{C}$, $\frac{2}{C}$, $\frac{2}{C$		
C. -2 D. 0 E. 3 A. $(5x - 1)$ and $(2x + 1)$ B. $(5x - 1)$ and $(2x + 3)$ C. $(5x + 3)$ and $(2x - 3)$ D. $(5x + 3)$ and $(2x - 1)$ E. $(5x + 3)$ and $(2x - 1)$ E. $(5x + 3)$ and $(2x + $		
D. 0 E. 3 B. $(8x - 1)$ and $(2x + 3)$ C. $(5x + 1)$ and $(2x - 3)$ D. $(5x + 3)$ and $(2x - 1)$ E. $(5x + 3)$ and $(2x - 1)$ E. $(5x + 3)$ and $(2x + 1)$ T. Given $f(x) = 4x + 1$ and $g(x) = x^2 - 2$, which of the following is an expression for $f(g(x))$? A. $-x^2 + 4x + 1$ B. $x^2 + 4x - 1$ C. $4x^2 - 7$ D. $4x^2 - 1$ E. $16x^2 + 8x - 1$ T. $(-x^2 + h^2 - 2)$ D. $x^2 + 2xh + h^2$ E. $x^2 + 2xh + h^2$ E. $x^2 + 2xh + h^2 - 2$ The following solution on $(-1)(n + 1,350) = n$? A. $(-1)(n + 1,350) = n$		A. $(5x - 3)$ and $(2x + 1)$
E. 3 $ \begin{array}{c} C. (5x + 1) & \text{and } (2x - 3) \\ D. (5x + 3) & \text{and } (2x - 1) \\ E. (5x + 3) & \text{and } (2x - 1) \\ E. (5x + 3) & \text{and } (2x - 1) \\ E. (5x + 3) & \text{and } (2x - 1) \\ E. (5x + 3) & \text{and } (2x - 1) \\ E. (5x + 3) & \text{and } (2x - 1) \\ E. (5x + 3) & \text{and } (2x - 1) \\ E. (5x + 3) & \text{and } (2x + 1) \\ \hline \end{array} $ $17. \text{ Given } f[x] = 4x + 1 & \text{and } g[x] = x^2 - 2, \text{ which of the following is an expression for } f[g(x)]? \\ Ax^2 + 4x + 1 & \text{A. } x^2 + h^2 \\ B. x^2 + 2x + 1 & \text{C. } x^2 + h^2 - 2 \\ D. 4x^2 - 1 & \text{C. } x^2 + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{C. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{E. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{E. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{E. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{E. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 - 2) & \text{E. } x^2 + 2xh + h^2 - 2 \\ E. (2x^2 + 2xh + h^2 + 2xh +$		B. $(5x-1)$ and $(2x+3)$
17. Given $f(x) = 4x + 1$ and $g(x) = x^2 - 2$, which of the following is an expression for $f(g(x))$? 18. If $f(x) = x^2 - 2$, then $f(x + h) = ?$ 18. If $f(x) = x^2 - 2$, then $f(x + h) = ?$ 18. If $f(x) = x^2 - 2$, then $f(x + h) = ?$ 18. If $f(x) = x^2 - 2$, then $f(x + h) = ?$ 18. If $f(x) = x^2 - 2$, then $f(x + h) = ?$ 19. In the complex numbers, where $f(x) = 1$, $f(x) = 1$, $f(x) = 1$, $f(x) = 1$. If $f(x) = 1$, $f(x) = 1$, $f(x) = 1$, $f(x) = 1$. If $f(x) = 1$, $f($		C. $(5x + 1)$ and $(2x - 3)$
17. Given $f(x) = 4x + 1$ and $g(x) = x^2 - 2$, which of the following is an expression for $f(g(x))$? A. $-x^2 + 4x + 1$ B. $x^2 + 4x - 1$ C. $4x^2 - 7$ D. $4x^2 - 1$ E. $16x^2 + 8x - 1$ 19. In the complex numbers, where $i^2 = -1$, $\frac{i}{1+i} \cdot \frac{1-i}{1-i} = ?$ A. $i - 1$ B. $1 + i$ C. $1 - i$ D. $\frac{1-i}{2}$ D. $\frac{1-i}{2}$ E. $\frac{1+i}{2}$ 20. What value of n will satisfy the equation $0.1(n + 1,350) = n$? A. $1,500$ B. $1,485$ C. $1,215$ D. 150 E. 135 21.) Which of the following gives all the solutions of $x^2 + 2x = 8$? A. 4 and 2 B. 4 and 2 C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ 22. Which of the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? A. 3 B. 3	E. 3	D. $(5x + 3)$ and $(2x - 1)$
following is an expression for f(g(x))? A. $-x^2 + 4x + 1$ B. $x^2 + 4x - 1$ C. $4x^2 - 7$ D. $4x^2 - 1$ E. $16x^2 + 8x - 1$ 19. In the complex numbers, where $i^2 = -1$, $\frac{i}{1+i} \cdot \frac{1-i}{1-i} = ?$ D. $\frac{1}{2} \cdot \frac{1}{2} $		E. (5x + 3) and (2x + 1)
A. $-x^2 + 4x + 1$		18. If $f(x) = x^2 - 2$, then $f(x + h) = ?$
A. $-x^2 + 4x + 1$ B. $x^2 + 4x - 1$ C. $4x^2 - 7$ D. $4x^2 - 1$ E. $16x^2 + 8x - 1$ 19. In the complex numbers, where $i^2 = -1$, $\frac{i}{1+i} * \frac{1-i}{1-i} = ?$ D. $x^2 + 2xh + h^2 - 2$ D. $x^2 + 2xh + h^2 - 2$ E. $16x^2 + 8x - 1$ 19. In the complex numbers, where $i^2 = -1$, $\frac{i}{1+i} * \frac{1-i}{1-i} = ?$ D. $x^2 + 2xh + h^2 - 2$ D. $x^2 + 2$	following is an expression for $f(g(x))$?	
B. $x^2 + 4x - 1$ C. $4x^2 - 7$ D. $4x^2 - 1$ E. $16x^2 + 8x - 1$ 19. In the complex numbers, where $i^2 = -1$, $\frac{i}{1+i} \cdot \frac{1-i}{1-i} = ?$ A. $i - 1$ B. $1 + i$ C. $1 - i$ D. $\frac{1-i}{2}$ E. $\frac{1+i}{2}$ 20. What value of n will satisfy the equation $0.1(n + 1,350) = n$? A. $1,500$ B. $1,485$ C. $1,215$ D. 150 E. $\frac{1+i}{2}$ 21.) Which of the following gives all the solutions of $x^2 + 2x = 8$? A. 4 and -2 B. -4 and 2 C. -8 and 1 D. -4 only E. -8 only 22. Which of the following is an irrational number that is a solution to the equation $ x^2 - 12 - 4 = 0$? A. 4 and 2 C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ 23. What is the real value of x in the equation $ \log_2 24 - \log_2 3 = \log_5 x$? A. 3 B. 21 C. 72 D. 125 E. 243 25. What is the real value of x in the equation: $ \log_2 24 - \log_2 3 = \log_5 x$?		0 1808012j 17 A11
C. $4x^2 - 7$ D. $4x^2 - 1$ E. $16x^2 + 8x - 1$ 19. In the complex numbers, where $i^2 = -1$, $\frac{i}{1+i} \cdot \frac{1-i}{1-i} = ?$ A. $i - 1$ B. $1 + i$ C. $1 - i$ D. $\frac{1-i}{2}$ D. $\frac{1+i}{2}$ D. $\frac{1+i}{2}$ D. What value of n will satisfy the equation $0.1(n+1,350) = n?$ A. $1,500$ B. $1,485$ C. $1,215$ D. 150 E. $\frac{1+i}{2}$ E. $1+i$		
D. $4x^2 - 1$		
E. $16x^2 + 8x - 1$ 19. In the complex numbers, where $i^2 = -1$, $\frac{i}{1+i} \bullet \frac{1-i}{1-i} = ?$ 20. What value of n will satisfy the equation $0.1(n + 1,350) = n$? A. $i - 1$ B. $1 + i$ C. $1 - i$ D. $\frac{1-i}{2}$ E. $\frac{1+i}{2}$ 21.) Which of the following gives all the solutions of $x^2 + 2x = 8$? A. 4 and 2 B. 4 and 2 C. 8 and 1 D. 4 only E. -8 only 22. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_3 x$? A. $\frac{3}{8}$ B. $\frac{2}{1}$ C. $\frac{7}{2}$ D. $\frac{15}{2}$ D. $\frac{1}{2}$ E. $\frac{1}{2}$ 24. The value of $\log_5 \left(5^{\frac{13}{2}} \right)$ is between of the following pairs of consecutive integers? A. $\frac{3}{2}$ A. $\frac{3}{2}$ B. $\frac{3}{2}$ C. $\frac{3}{2}$ D. $\frac{3}{2}$		10 10 10 10 10 10 10 10 10 10 10 10 10 1
19. In the complex numbers, where $i^2 = -1$, $\frac{i}{1+i} \bullet \frac{1-i}{1-i} = ?$ A. $i-1$ B. $1+i$ C. $1-i$ D. $\frac{1-i}{2}$ C. $1-2i$ D. 150 E. $\frac{1+i}{2}$ 21.) Which of the following gives all the solutions of $x^2 + 2x = 8?$ A. 4 and -2 B. 4 and 2 C8 and 1 D4 only E8 only 23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x?$ D. 125 D. 125 D. 20. What value of n will satisfy the equation $0.1(n+1,350) = n?$ A. 1,500 B. 1,485 C. 1,215 D. 150 E. 135 22. Which of the following is an irrational number that is a solution to the equation $ x^2 - 12 - 4 = 0?$ A. 4 B. $\sqrt{2}$ C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ 24. The value of $\log_5 \left(\frac{5^{13}}{2} \right)$ is between of the following pairs of consecutive integers? A. 3 B. 21 C. 72 D. 125 D. 125 C. 5 and 6 D. 6 and 7 E. 9 and 10 D. 25. What is the real value of x in the equation: $\log_2 24 - \log_2 3 = \log_5 x?$	D. $4x^2 - 1$	E. $x^2 + 2xh + h^2 - 2$
A. $i-1$ B. $1+i$ C. $1-i$ D. $\frac{1-i}{2}$ B. $\frac{1}{2}$ C. $\frac{1-i}{2}$ C. $\frac{1}{2}$ D. $\frac{150}{2}$ E. $\frac{1+i}{2}$ 21.) Which of the following gives all the solutions of $x^2 + 2x = 8$? A. 4 and -2 B. 4 and 2 C. -8 and 1 D. -4 only E. -8 only 23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? A. 3 B. 21 C. 72 D. 150 E. 135 22. Which of the following is an irrational number that is a solution to the equation $ x^2 - 12 - 4 = 0$? A. 4 B. $\sqrt{2}$ C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ 24. The value of $\log_5 \left(\frac{13}{2}\right)$ is between of the following pairs of consecutive integers? A. 3 B. 4 and 5 C. 5 and 6 D. 6 and 7 E. 9 and 10 25. What is the real value of x in the equation: $\log_2 24 - \log_2 3 = \log_5 x$?	E. $16x^2 + 8x - 1$	
0.1(n + 1,350) = n? A. i - 1 B. 1 + i C. 1 - i D. $\frac{1-f}{2}$ D. $\frac{1-f}{2}$ E. $\frac{1+i}{2}$ 21.) Which of the following gives all the solutions of $x^2 + 2x = 8$? A. 4 and -2 B4 and 2 C8 and 1 D4 only E8 only 23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? A. 0 and 1 B. 21 C. 72 D. 125 E. 243 A. 1,500 B. 1,485 C. 1,215 D. 150 E. 135 22. Which of the following is an irrational number that is a solution to the equation $ x^2 - 12 - 4 = 0$? A. 4 B. $\sqrt{2}$ C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ 24. The value of $\log_5 \left(5^{\frac{13}{2}}\right)$ is between of the following pairs of consecutive integers? A. 0 and 1 B. 4 and 5 C. 5 and 6 D. 6 and 7 E. 9 and 10 25. What is the real value of x in the equation: $\log_2 24 - \log_2 3 = \log_5 x$?	19. In the complex numbers, where $i^2 = -1$, $\frac{i}{1+i} \cdot \frac{1-i}{1-i} = ?$	
B. $1+i$ C. $1-i$ D. $\frac{1-i}{2}$ E. $\frac{1+i}{2}$ $21.) Which of the following gives all the solutions of x^2 + 2x = 8? A. 4 and -2 B. -4 and 2 C. -8 and 1 D. -4 only E. -8 only 23. What is the real value of x in the equation \log_2 24 - \log_2 3 = \log_5 x? A. 3 B. 21 C. 72 D. 125 E. 243 A. 4 = 1,500 B. 1,485 C. 1,215 D. 150 E. 135 22. Which of the following is an irrational number that is a solution to the equation x^2 - 12 - 4 = 0? A. 4 B. \sqrt{2} C. 2\sqrt{2} C. 2\sqrt{2} D. 4\sqrt{2} E. 2\sqrt{3} 24. The value of \log_5 \left(\frac{5^{13}}{2} \right) is between of the following pairs of consecutive integers? A. 0 and 0 B. $	1+1 1-1	0.1(n + 1,350) = n?
B. 1.41 C. $1-i$ D. $\frac{1-i}{2}$ E. $\frac{1+i}{2}$ E	A. i – 1	
C. $1-1$ D. $\frac{1-i}{2}$ E. $\frac{1+i}{2}$ C. $1,215$ D. 150 E. 135 21.) Which of the following gives all the solutions of $x^2 + 2x = 8$? A. 4 and -2 B. -4 and 2 C. -8 and 1 D. -4 only E. -8 only 22. Which of the following is an irrational number that is a solution to the equation $ x^2 - 12 - 4 = 0$? A. 4 B. $\sqrt{2}$ C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ 23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? A. 3 B. 21 C. 72 D. 125 E. 243 C. $1,215$ D. 150 E. 135 C. $1,215$ D. 150 D.	B. 1 + i	95.00 95.00 0000
D. $\frac{1}{2}$ E. $\frac{1+i}{2}$ D. 150 E. 135 21.) Which of the following gives all the solutions of $x^2 + 2x = 8$? A. 4 and -2 B. -4 and 2 C. -8 and 1 D. -4 only E. -8 only 22. Which of the following is an irrational number that is a solution to the equation $ x^2 - 12 - 4 = 0$? A. 4 B. $\sqrt{2}$ C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ 23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? A. 3 B. 21 C. 72 D. $4 = 0$ C. $4 = 0$	C. 1 – i	The same of the same same same same same same same sam
E. $\frac{1+i}{2}$ E. 135 21.) Which of the following gives all the solutions of $x^2 + 2x = 8$? A. 4 and -2 B4 and 2 C8 and 1 D4 only E8 only 23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? A. 0 and 1 B. 4 and 5 C. 72 D. 125 E. 243 E. 135 22. Which of the following is an irrational number that is a solution to the equation $ x^2 - 12 - 4 = 0$? A. 4 B. $\sqrt{2}$ C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ 24. The value of $\log_5 \left(5^{\frac{13}{2}}\right)$ is between of the following pairs of consecutive integers? A. 0 and 1 B. 4 and 5 C. 5 and 6 D. 6 and 7 E. 9 and 10 25. What is the real value of x in the equation: $\log_2 24 - \log_2 3 = \log_5 x$?	$D_{i} = \frac{1-i}{2}$	
21.) Which of the following gives all the solutions of $x^2 + 2x = 8$? 22. Which of the following is an irrational number that is a solution to the equation $ x^2 - 12 - 4 = 0$? A. 4 and -2 B4 and 2 C8 and 1 D4 only E8 only 23. What is the real value of x in the equation $ \log_2 24 - \log_2 3 \log_5 x$? A. 3 B. 21 C. 72 D. 125 D. 4 $\log_2 24 - \log_2 3 \log_5 x$? A. 0 and 1 B. 4 and 5 C. 5 and 6 D. 6 and 7 E. 9 and 10 25. What is the real value of x in the equation: $ \log_2 24 - \log_2 3 \log_5 x$?		10.00 % 36.000
solution to the equation $ x^2-12 -4=0$? A. 4 and -2 B. -4 and 2 C. -8 and 1 D. -4 only E. -8 only 23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? A. 3 B. 21 C. 72 D. 125 E. 243 Solution to the equation $ x^2-12 -4=0$? A. 4 B. $\sqrt{2}$ C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ 24. The value of $\log_5 \left(5^{\frac{13}{2}}\right)$ is between of the following pairs of consecutive integers? A. 0 and 0 B. 0	$E.\frac{1+i}{2}$	E. 135
A. 4 and -2 B4 and 2 C8 and 1 D4 only E8 only 23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? A. 3 B. 21 C. 72 D. 40 and 1 B. 4 and 5 C. 72 D. 125 E. 243 A. 0 and 1 B. 4 and 5 C. 5 and 6 D. 6 and 7 E. 9 and 10 25. What is the real value of x in the equation: $\log_2 24 - \log_2 3 = \log_5 x$?	21.) Which of the following gives all the solutions of	
A. 4 and -2 B. -4 and 2 C. -8 and 1 D. -4 only E. -8 only 23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? A. 3 B. 21 C. 72 D. 125 E. 243 B. $\sqrt{2}$ C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ 24. The value of $\log_5 \left(5^{\frac{13}{2}}\right)$ is between of the following pairs of consecutive integers? A. 0 and 0 B. 0 B. 0 B. 0 C. 0 B. 0 B. 0 C. 0 B. 0 B. 0 B. 0 C. 0 B. 0 B. 0 B. 0 C. 0 B.	$x^2 + 2x = 8?$	solution to the equation $ x^2 - 12 - 4 = 0$?
B4 and 2 C8 and 1 D4 only E8 only $ \begin{array}{lll} \text{D. } 4\sqrt{2} \\ \text{E. } 2\sqrt{3} \end{array} $ 23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? A. 3 B. 21 C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ $ \begin{array}{lll} \text{24. The value of } \log_5 \left(5^{\frac{13}{2}}\right) \text{ is between of the following pairs of consecutive integers?} \\ \text{A. 0 and 1} \\ \text{B. 4 and 5} \\ \text{C. 5 and 6} \\ \text{D. 6 and 7} \\ \text{E. 243} $ C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ $ \begin{array}{lll} \text{24. The value of } \log_5 \left(5^{\frac{13}{2}}\right) \text{ is between of the following pairs of consecutive integers?} \\ \text{A. 0 and 1} \\ \text{B. 4 and 5} \\ \text{C. 5 and 6} \\ \text{D. 6 and 7} \\ \text{E. 9 and 10} \end{array} $ 25. What is the real value of x in the equation: $\log_2 24 - \log_2 3 = \log_5 x$?		A. 4
B4 and 2 C8 and 1 D4 only E8 only $ \begin{array}{lll} \text{D. } 4\sqrt{2} \\ \text{E. } 2\sqrt{3} \end{array} $ 23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? A. 3 B. 21 C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ $ \begin{array}{lll} \text{24. The value of } \log_5 \left(5^{\frac{13}{2}}\right) \text{ is between of the following pairs of consecutive integers?} \\ \text{A. 0 and 1} \\ \text{B. 4 and 5} \\ \text{C. 5 and 6} \\ \text{D. 6 and 7} \\ \text{E. 243} $ C. $2\sqrt{2}$ D. $4\sqrt{2}$ E. $2\sqrt{3}$ $ \begin{array}{lll} \text{24. The value of } \log_5 \left(5^{\frac{13}{2}}\right) \text{ is between of the following pairs of consecutive integers?} \\ \text{A. 0 and 1} \\ \text{B. 4 and 5} \\ \text{C. 5 and 6} \\ \text{D. 6 and 7} \\ \text{E. 9 and 10} \end{array} $ 25. What is the real value of x in the equation: $\log_2 24 - \log_2 3 = \log_5 x$?	A. 4 and -2	$B.\sqrt{2}$
C8 and 1 D4 only E8 only D. $4\sqrt{2}$ E. $2\sqrt{3}$ 23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? A. 3 B. 21 C. 72 D. $4\sqrt{2}$ E. $2\sqrt{3}$ 24. The value of $\log_5 \left(5^{\frac{13}{2}}\right)$ is between of the following pairs of consecutive integers? A. 0 and 1 B. 4 and 5 C. 5 and 6 D. 6 and 7 E. 9 and 10 25. What is the real value of x in the equation: $\log_2 24 - \log_2 3 = \log_5 x$?	B4 and 2	
E. $2\sqrt{3}$ 23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? A. 3 B. 21 C. 72 D. 125 E. $2\sqrt{3}$ E. $2\sqrt{3}$ 24. The value of $\log_5 \left(5^{\frac{13}{2}}\right)$ is between of the following pairs of consecutive integers? A. 0 and 1 B. 4 and 5 C. 5 and 6 D. 6 and 7 E. 9 and 10 25. What is the real value of x in the equation: $\log_2 24 - \log_2 3 = \log_5 x$?	C8 and 1	No. of the control of
23. What is the real value of x in the equation $\log_2 24 - \log_2 3 = \log_5 x$? 24. The value of $\log_5 \left(5^{\frac{13}{2}}\right)$ is between of the following pairs of consecutive integers? A. 0 and 1 B. 4 and 5 C. 72 D. 125 E. 243 25. What is the real value of x in the equation: $\log_2 24 - \log_2 3 = \log_5 x$?	D4 only	l ·
$log_{2}24 - log_{2}3 = log_{5}x?$ A. 3 B. 21 C. 72 D. 125 E. 243 $log_{2}24 - log_{2}3 = log_{5}x?$	E8 only	L. 2 V 3
$10g_224 - 10g_23 = 10g_5x$? A. 3 B. 21 C. 72 D. 125 E. 243 Consecutive integers? A. 0 and 1 B. 4 and 5 C. 5 and 6 D. 6 and 7 E. 9 and 10 25. What is the real value of x in the equation: $log_224 - log_23 = log_5x$?	23. What is the real value of x in the equation	24. The value of $\log_5(5^{\frac{13}{2}})$ is between of the following pairs of
A. 0 and 1 B. 21 C. 72 B. 4 and 5 C. 5 and 6 D. 6 and 7 E. 9 and 10 D. What is the real value of x in the equation: $\log_2 24 - \log_2 3 = \log_5 x$?		
B. 4 and 5 C. 72 D. 125 E. 243 B. 4 and 5 C. 5 and 6 D. 6 and 7 E. 9 and 10 25. What is the real value of x in the equation: $\log_2 24 - \log_2 3 = \log_5 x$?	A. 3	
C. 72 C. 5 and 6 D. 6 and 7 E. 9 and 10 25. What is the real value of x in the equation: $\log_2 24 - \log_2 3 = \log_5 x$?	B. 21	AS \$60,045,000 (\$60,050,4400 \$60.0)
D. 6 and 7 E. 243 D. 6 and 7 E. 9 and 10 25. What is the real value of x in the equation: $log_2 24 - log_2 3 = log_5 x$?		
E. 9 and 10 25. What is the real value of x in the equation: $log_2 24 - log_2 3 = log_5 x$?	D. 125	
25. What is the real value of x in the equation: $log_2 24 - log_2 3 = log_5 x$?	E. 243	1 Mark 19 7 Table 19 (2013) W 2 (1020)
	25. What is the real value of v in the equation: log 24 –	
A. 3 B. 21 C. 72 D. 125 E. 243	23. What is the real value of X III the equation. 108224 -	10852 - 10824:
/ A	A. 3 B. 21 C. 72 D. 125 E. 243	

26. From a hot air balloon, the angle between a radio antenna straight below and the base of the library downtown is 57° as shown below. If the distance between the radio antenna and the library is 1.3 miles, how many miles high is the balloon?

- **A.** $\frac{1.3}{\sin 57^\circ}$
- **B.** $\frac{1.3}{\cos 57^{\circ}}$
- C. $\frac{1.3}{\tan 57^{\circ}}$
- **D.** 1.3 sin 57°
- E. 1.3 tan 57°

27. A 24 foot ladder is leaning against a telephone pole. The angle of elevation to the top of the telephone pole is 37°. What is the height, in feet, of telephone pole?

- A. 24tan37°
- B. 24sin37°
- C. 24cos37°
- D. 24sec37°
- E. 24cot37°

28. For right triangle Δ RST shown below, what is tan R?

- A. r/s
- B. r/t
- C. t/r
- D. t/s
- E. s/t

29. Which of the following is equivalent

- to $\frac{\tan n \csc n}{\sin n \sec n}$?
- (A) 1
- (B) $\sin n$
- (C) $\cos n$
- (D) $\cot n$
- (E) $\csc n$

30. If $\tan A = \frac{x}{y}$, x > 0, y > 0, and $0 < A < 90^{\circ}$, what is $\sin A$?

B. $\frac{y}{x}$

D. $\frac{y}{\sqrt{x^2+y^2}}$

31. The 2 triangles in the rectangle below share a common side. What is $\sin(a - b)$?

(Note: sin(a - b) = sinacosb - cosasinb for all a and b)

12 inches

- A. 7/25
- B. 1/2
- C. 3/5
- D. 1
- E. 25/9

10

32. The quantity $\sqrt[n]{2^p}$ is defined when n is an integer greater than 2 and p is any nonzero real number. Which of the following is a relationship between n and p that will always make $\sqrt[n]{2^p}$ a positive integer?	33. Which of the following statements $must$ be true whenever n , a , b , and c are positive integers such that $n < a$, $c > a$, and $b > c$? A. $a < n$ B. $b - n > a - n$
A. $\frac{p}{n}$ is a positive integer	C. b < n
B. $\frac{n}{p}$ is a positive integer	D. $n + b = a + c$ E. $2n > a + b$
C. p is greater than n	
D. n is greater than p	
E. The sum of p and n is one	
34. Which of the following is the set of all real numbers x such that x + 3 > x + 5? A. The empty set B. The set containing all real numbers C. The set containing all negative real numbers D. The set containing all nonnegative real numbers E. The set containing only zero	35. How many irrational numbers are there between 1 and 6? F. 1 G. 3 H. 4 J. 10 K. Infinitely many
36. If $6a^4b^3 < 0$, then which of the following CANNOT be true?	37. Each of the variables <i>t</i> , <i>w</i> , <i>x</i> , <i>y</i> , and <i>z</i> represents a different <i>positive</i> real number. Given the equations below, which of the 4 variables <i>w</i> , <i>x</i> , <i>y</i> , and <i>z</i> necessarily has the
A. b < 0	greatest value?
B. b > 0	1.23w = t
C. a = b D. a < 0	1.01x = t $0.99y = t$
E. a > 0	0.23z = t
	F. <i>w</i>
	G. x
	H. <i>y</i> J. <i>z</i>
	K. Cannot be determined from the given information

And one more matrix problem!

In the 2 × 2 matrix below, b_1 and b_2 are the costs per pound of bok choy (Chinese greens) at Market 1 and Market 2, respectively; r_1 and r_2 are the costs per pound of rice flour at these 2 markets, respectively. In the following matrix product, what does q represent?

- $\begin{bmatrix} 0.5 & 0.5 \end{bmatrix} \star \begin{bmatrix} b_1 & F_1 \\ b_2 & F_2 \end{bmatrix} = \begin{bmatrix} p & q \end{bmatrix}$
- **F.** The cost of r_1 pounds of rice flour at \$0.50 per pound
- G. The cost of a half-pound of rice flour at Market 1
- H. The total cost of a half-pound of bok choy and a half-pound of rice flour at Market 1
- J. The total cost of a half-pound of bok choy and a half-pound of rice flour at Market 2 $\,$
- K. The total cost of a half-pound of rice flour at Market 1 and a half-pound of rice flour at Market 2